Appendix I – Weight of hay and silage bales

	Bale type	Wet weight (kg)	Dry Matter (%)	Dry Weight (kg)
	Small square	23	85	20
	4 x 4 round	250	85	215
	5 x 4 round (15 small bale equivalents)	350	85	300
Hay	5 x 6 round (20 small bale equivalents)	500	85	425
	8 x 3 x 3 square	300	85	255
	8 x 4 x 3 square	600	85	510
	8 x 4 x 4 square	750	85	640
	4 x 4 round	700	35	245
Cilman	1 cubic metre (wilted)	580	30	175
Silage	1 cubic metre (direct cut)	830	18	115
	1 cubic metre maize silage	500	35	175

Appendix II – Energy tables and calculations

Calculation for maintenance:

Maintenance MJ ME = $(0.1 \times \text{liveweight}) + 5$

Calculations for daily energy requirements of
growing cattle:

growing	outlie.	
< 300	0.5 kg/day	MJ ME = 1.7 x maintenance
kg LW	1.0 kg/day	MJ ME = 2.2 x maintenance
	1.5 kg/day	MJ ME = 2.7 x maintenance
300 -	0.5 kg/day	MJ ME = 1.6 x maintenance
500 kgLW	1.0 kg/day	MJ ME = 2.1 x maintenance
	1.5 kg/day	MJ ME = 2.6 x maintenance
500 +	0.5 kg/day	MJ ME = 1.5 x maintenance
kgLW	1.0 kg/day	MJ ME = 2.0 x maintenance
	1.5 kg/day	MJ ME = 2.5 x maintenance

Lookup tables for daily energy requirements of pregnant and lactating cattle:

Requirements for pregnancy – add to maintenance of cow

Expected calf birth	Weeks before calving				
weight (kg)	- 12	- 8	- 4	0	
	MJ ME/cow/day				
30	6	11	20	34	
40	9	15	26	45	
50	11	18	32	55	

Requirements for lactation – add to maintenance of cow

Normal calf	Months after calving					
weaning weight (kg)	+ 1	+ 3	+ 5	+ 7		
(kg)		/				
150	35	45	55	55		
200	40	55	65	75		
250	50	70	85	95		
300	60	80	100	115		

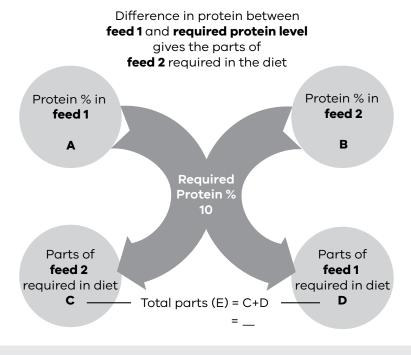
Appendix III – Tactical feed budget

				TA	CTICAL FEE	D BUDGI	ΞT			
Scenario:										
Stop 1 Whore	~ ~ · ·	vo now2								
Step 1 - Where		ve now? Liveweig	aht (k	(a)	Current	F00	Pastur	e quality	Grazing Area (ha)	
					(kg DM/h			kgDM) (c)	(d)	
Step 2 – Where	do w	e want to g	et to	?						
Time frame (do	ays) (e	e)		Requi	red liveweig	ıht gain ((kg/day)		gy requirement J ME/day) (f)	
Animal feed re (kgDM/day)	quirer	ment		Herd	pasture into		M/day)	in	Total timeframe pasture intake (kgDM)	
(g) g = f ÷c									(i) i = h x e	
Step 3 – How d	o we	get there?								
Future Growth	1									
Month	Days	s in month			rowth rate a/day) (k)	Are	ea (ha) (I)		al grown/month gDM) = j x k x l	
						Total	Growth (n	n)		
Minimum pasti	ure cc	over (kg DM	/ha) ((n)	Provision 1 o = (b - n)		rent pastu	ıre (kgDM) (0)	
Provision from current pasture (kgDM) (o)										
Provision from future growth (kgDM) (m)										
Total pasture intake (kgDM) (i)										
FEED BALANCE (kgDM) = (o + m) - i										

Appendix III - Tactical feed budget (continued)

Step 4 – Options for achieving feed balance

Converting pasture deficit into supplementary feed requirement


Determine total energy shortage							
Energy in pasture* MJ ME/kgDM (c)	X	Feed balance deficit kgDM	=	Total energy shortage MJ ME			
Determine kgDM of supplement required							

Determine kgDM of supplement required							
Total energy shortage		Energy value of supplement		Supplement required			
MJ ME	÷	MJ ME/kgDM	=	kgDM			

Determine 'as bought' amount of supplement						
Supplement required	÷	Dry matter % of supplement	'As Bought' supplement required			
KgDM 	kgDM - 		kg			

^{*} This figure comes from box (c) on the Tactical Feed Budget

Appendix IV - Pearson's Square worksheet

Proportion (%) of **feed 1** in diet = (D÷C) **Feed 1** = $_$ ÷ $_$ = $_$ Proportion (%) of **feed 2** in diet = (C÷E) **Feed 2** = $_$ ÷ $_$ = $_$

Appendix IV – Pearson's Square worksheet (continued)

	Amou	ınt of energy needed from f	eed 1			
Proportion of feed 1 in diet	×	Animal requirements MJ ME/day	=	Amount of energy needed from feed 1 MJ ME/day		
		kgDM required of feed 1				
Amount of energy needed from feed 1		Energy value of feed 1		Amount required of feed 1		
MJ ME/day	÷	MJ ME/kgDM	=	kgDM		
	Amount of f	eed required on an as fed bo	asis (feed 1)			
Amount required		Dry matter of feed 1				
of feed 1 kgDM	÷	(expressed as a decimal, i.e. 90%	=	Kg as fed per head per day of feed 1		
		= 0.9)				
	Amou	int of energy needed from fe	eed 2			
Proportion of feed 2 in diet	×	Animal requirements	=	Amount of energy needed from feed 2		
	^	MJ ME/day 	_	MJ ME/day		
		kgDM required of feed 2				
Amount of energy needed from feed 2		Energy value of feed 2		Amount required of feed 2		
MJ ME/day	÷	MJ ME/kgDM	=	kgDM		
Amount of feed required on an as fed basis (feed 2)						
Amount required		Dry matter of feed 2				
of feed 2 kgDM	÷	(expressed as a decimal, i.e. 85%	=	Kg as fed per head per day of feed 2		
		= 0.85)				